Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments

نویسندگان

  • Xiao-Ming Hu
  • Petra M. Klein
  • Ming Xue
چکیده

[1] In previous studies, the Yonsei University (YSU) planetary boundary layer (PBL) scheme implemented in the Weather Research and Forecasting (WRF) model was reported to perform less well at night, while performing better during the day. Compared to observations, predicted nocturnal low-level jets (LLJs) were typically weaker and higher. Also, the WRF model with Chemistry (WRF/Chem) with the YSU scheme was reported to sometimes overestimate near-surface ozone (O3) concentration during the nighttime. The updates incorporated in WRF version 3.4.1, include modifications of the nighttime velocity scale used in the YSU boundary layer scheme. The impacts of this update on the prediction of nighttime boundary layers and related implications for wind resource assessment and air quality simulations are examined in this study. The WRF/Chem model with the updated YSU scheme predicts smaller eddy diffusivities in the nighttime boundary layer, and consequently lower and stronger LLJs over a domain focusing on the southern Great Plains area, showing a better agreement with the observations. As a result, related overestimation problems for near-surface temperature and wind speeds appear to be resolved, and the nighttime minimum near-surface O3 concentrations are better captured. Simulated vertical distributions of meteorological and chemical variables for weak wind regimes (e.g., in the absence of LLJ) are less impacted by the YSU updates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of WRF model PBL schemes on air quality simulations over Catalonia, Spain.

Here we analyze the impact of four planetary boundary-layer (PBL) parametrization schemes from the Weather Research and Forecasting (WRF) numerical weather prediction model on simulations of meteorological variables and predicted pollutant concentrations from an air quality forecast system (AQFS). The current setup of the Spanish operational AQFS, CALIOPE, is composed of the WRF-ARW V3.5.1 mete...

متن کامل

Atmospheric flowfield Simulations over a Tropical Coastal region Kalpakkam using the ARW Mesoscale Model

Field experimental observations from GPS Radiosonde, 3 meteorological towers and 16 automated weather stations were employed to validate boundary layer wind field simulations made with Weather Research and Forecasting (ARW) model in the tropical coastal Kalpakkam region in southern India during the Round Robin Exercise (RRE) field experiment period (14 -24 September 2010). Three nested domain w...

متن کامل

Evaluation of Surface Fluxes in the WRF Model: Case Study for Farmland in Rolling Terrain

The partitioning of available energy into surface sensible and latent heat fluxes impacts the accuracy of simulated near surface temperature and humidity in numerical weather prediction models. This case study evaluates the performance of the Weather Research and Forecasting (WRF) model on the simulation of surface heat fluxes using field observations collected from a surface flux tower in Oreg...

متن کامل

The Impact of Climate Change on Air Quality–Related Meteorological Conditions in California. Part I: Present Time Simulation Analysis

This study investigates the impacts of climate change on meteorology and air quality conditions in California by dynamically downscaling Parallel Climate Model (PCM) data to high resolution (4 km) using the Weather Research and Forecast (WRF) model. This paper evaluates the present years’ (2000–06) downscaling results driven by either PCM or National Centers for Environmental Prediction (NCEP) ...

متن کامل

بررسی پارامترسازی عمق لایه پایدار شبانه و تاثیر آن در آلودگی هوای یک منطقه شهری با توپوگرافی پیچیده (تهران)

Mixing height of the atmospheric boundary depends on the vertical variation of temperature in the atmosphere which includes temperature inversion (including surface and elevated inversions) that has a significant effect on air quality. The mixing height like some other meteorological variables has diurnal variations. The reason for that is its dependence on some other basic meteorological param...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013